jbovlaste
a lojban dictionary editing system
User:
Pass:

Home
Get A Printable Dictionary
Search Best Words
Recent Changes
How You Can Help
valsi - All
valsi - Preferred Only
natlang - All
natlang - Preferred Only
Languages
XML Export
user Listing
Report Bugs
Utilities
Status
Help
Create Account
Discussion of "nifkemtemsalri"

Comment #1: Oops: order of differintegral
Curtis W Franks (Fri Mar 4 16:43:20 2016)

I just realized that I defined salri so that when its order is positive,
then integral is meant, but this word (nifkemtemsalri) so that when the
order of the differintegral that is applied to the displacement is
positive, then derivatives thereof are meant. These definitions are
incompatible. However, but are pretty natural, but also a matter of
taste/convention.

We must choose which one we want: do positive-order differintegrals refer
to integrals or derivatives?

I personally prefer positive orders to mean integrals, in which case the
definition of nifkemtemsalri must change. The downside is that, when
discussing velocity, one will need to specify -1 (two words) as the
argument of the order terbri for this word, as opposed to merely 1 (usually
one word is acceptable (although I personally dislike the asymmetry) and
this is much easier to infer from context/as 'default' of sorts if it is
not explicitly specified, especially later). But repeated usage can either
be fixed via zmico and/or sei'au, or can be inferred from context after
an initial introduction. Another downside is that one will count downward
(toward negative infinity) through derivatives, which are useful
quantities, frequently even while the positive quantities will almost never
be mentioned (the integral of displacement with respect to time is not very
useful). Counting down through negatives is, I think, slightly harder than
counting upward through positive numbers; it is also weird to always have
negatives involved (and never have positives). But it is also
'symbolic'/'pictorially intuitive' and may be fixed/righted/countered in a
given discourse via zmico and/or sei'au. Additionally, it allows one to
discuss taking the integral of velocity as 'building up' displacement,
which is more intuitive than 'descending to'/'building down' the same. That
is: integration of derivatives increases the differintegral order of the
base quantity involved, in a way that implies 'increase', 'summation', or
'building' (and differentiation is 'breaking apart', 'dividing', or
'narrowing', which has an intuition of negativity about/to it).
But, again, all of this is merely conventional and I might be biased by my
culture, at the least. This stuff that makes sense to me may not at all be
intuitive to other people, who indeed may find the exact opposite to be
more intuitive. Nonetheless, my vote is for positive order to be for
integrals and negative ones to be derivatives.

We need to fix a convention. So, what say you?

 Comment #2: Re: Oops: order of differintegral Curtis W Franks (Mon May 16 08:12:43 2016) krtisfranks wrote:> I just realized that I defined salri so that when its order is positive, > then integral is meant, but this word (nifkemtemsalri) so that when the > order of the differintegral that is applied to the displacement is > positive, then derivatives thereof are meant. These definitions are > incompatible. However, but are pretty natural, but also a matter of > taste/convention.> > We must choose which one we want: do positive-order differintegrals refer> to integrals or derivatives?> > I personally prefer positive orders to mean integrals, in which case the > definition of nifkemtemsalri must change. The downside is that, when > discussing velocity, one will need to specify -1 (two words) as the > argument of the order terbri for this word, as opposed to merely 1 (usually> one word is acceptable (although I personally dislike the asymmetry) and > this is much easier to infer from context/as 'default' of sorts if it is > not explicitly specified, especially later). But repeated usage can either > be fixed via zmico and/or sei'au, or can be inferred from context after> an initial introduction. Another downside is that one will count downward> (toward negative infinity) through derivatives, which are useful > quantities, frequently even while the positive quantities will almost never> be mentioned (the integral of displacement with respect to time is not very> useful). Counting down through negatives is, I think, slightly harder than > counting upward through positive numbers; it is also weird to always have> negatives involved (and never have positives). But it is also > 'symbolic'/'pictorially intuitive' and may be fixed/righted/countered in a > given discourse via zmico and/or sei'au. Additionally, it allows one to> discuss taking the integral of velocity as 'building up' displacement, > which is more intuitive than 'descending to'/'building down' the same. That> is: integration of derivatives increases the differintegral order of the > base quantity involved, in a way that implies 'increase', 'summation', or> 'building' (and differentiation is 'breaking apart', 'dividing', or > 'narrowing', which has an intuition of negativity about/to it).> But, again, all of this is merely conventional and I might be biased by my > culture, at the least. This stuff that makes sense to me may not at all be > intuitive to other people, who indeed may find the exact opposite to be > more intuitive. Nonetheless, my vote is for positive order to be for > integrals and negative ones to be derivatives.> > We need to fix a convention. So, what say you?I have edited this definition so as to comply with my preference (negative orders correspond to derivatives of displacement with respect to time). This clears up the issues of incompatibility and inconsistency between definitions, but it does not fix an underlying concern of whether or not wewant our conventions to default in this manner by definition itself.
 Currently, jbovlaste will accept data for 69 languages. You are not logged in.

 recent changes jbovlaste main This is jbovlaste, the lojban dictionary system. The main code was last changed on Wed 07 Oct 2020 05:54:55 PM PDT. All content is public domain. By submitting content, you agree to place it in the public domain to the fullest extent allowed by local law. jbovlaste is an official project of the logical language group, and is now headed by Robin Lee Powell. E-mail him if you have any questions. care to log in?